题目描述
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入:root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出:[[5,4,11,2],[5,8,4,5]]
示例 2:
输入:root = [1,2,3], targetSum = 5
输出:[]
示例 3:
输入:root = [1,2], targetSum = 0
输出:[]
提示:
树中节点总数在范围 [0, 5000] 内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
解题
dfs解法
前言
注意到本题的要求是,找到所有满足从「根节点」到某个「叶子节点」经过的路径上的节点之和等于目标和的路径。核心思想是对树进行一次遍历,在遍历时记录从根节点到当前节点的路径和,以防止重复计算。思路及算法
我们可以采用深度优先搜索的方式,枚举每一条从根节点到叶子节点的路径。当我们遍历到叶子节点,且此时路径和恰为目标和时,我们就找到了一条满足条件的路径。
代码实现
class Solution {
List> ret = new LinkedList>();
Deque path = new LinkedList();
public List> pathSum(TreeNode root, int targetSum) {
dfs(root, targetSum);
return ret;
}
public void dfs(TreeNode root, int targetSum) {
if (root == null) {
return;
}
path.offerLast(root.val);
targetSum -= root.val;
if (root.left == null && root.right == null && targetSum == 0) {
ret.add(new LinkedList(path));
}
dfs(root.left, targetSum);
dfs(root.right, targetSum);
path.pollLast();
}
}
- 复杂度分析
复杂度分析
时间复杂度:O(N^2)·,其中 N 是树的节点数。在最坏情况下,树的上半部分为链状,下半部分为完全二叉树,并且从根节点到每一个叶子节点的路径都符合题目要求。此时,路径的数目为 O(N),并且每一条路径的节点个数也为 O(N)O(N),因此要将这些路径全部添加进答案中,时间复杂度为 O(N^2)
空间复杂度:O(N),其中 N 是树的节点数。空间复杂度主要取决于栈空间的开销,栈中的元素个数不会超过树的节点数。
bfs解法
- 思路及算法
我们也可以采用广度优先搜索的方式,遍历这棵树。当我们遍历到叶子节点,且此时路径和恰为目标和时,我们就找到了一条满足条件的路径。
为了节省空间,我们使用哈希表记录树中的每一个节点的父节点。每次找到一个满足条件的节点,我们就从该节点出发不断向父节点迭代,即可还原出从根节点到当前节点的路径。
- 代码实现
class Solution {
List> ret = new LinkedList>();
Map map = new HashMap();
public List> pathSum(TreeNode root, int targetSum) {
if (root == null) {
return ret;
}
Queue queueNode = new LinkedList();
Queue queueSum = new LinkedList();
queueNode.offer(root);
queueSum.offer(0);
while (!queueNode.isEmpty()) {
TreeNode node = queueNode.poll();
int rec = queueSum.poll() + node.val;
if (node.left == null && node.right == null) {
if (rec == targetSum) {
getPath(node);
}
} else {
if (node.left != null) {
map.put(node.left, node);
queueNode.offer(node.left);
queueSum.offer(rec);
}
if (node.right != null) {
map.put(node.right, node);
queueNode.offer(node.right);
queueSum.offer(rec);
}
}
}
return ret;
}
public void getPath(TreeNode node) {
List temp = new LinkedList();
while (node != null) {
temp.add(node.val);
node = map.get(node);
}
Collections.reverse(temp);
ret.add(new LinkedList(temp));
}
}
- 复杂度分析
时间复杂度:O(N^2),其中 NN 是树的节点数。分析思路与方法一相同。
空间复杂度:O(N),其中 NN 是树的节点数。空间复杂度主要取决于哈希表和队列空间的开销,哈希表需要存储除根节点外的每个节点的父节点,队列中的元素个数不会超过树的节点数

