人间日常

所行皆过往,所愿皆成真

正在加载今日诗词....

单词接龙——leetcode127

单词接龙——leetcode127

题目描述

字典 wordList 中从单词 beginWord 和 endWord 的 转换序列 是一个按下述规格形成的序列:
序列中第一个单词是 beginWord
序列中最后一个单词是 endWord
每次转换只能改变一个字母。
转换过程中的中间单词必须是字典 wordList 中的单词。
给你两个单词 beginWordendWord 和一个字典 wordList ,找到从 beginWordendWord 的 最短转换序列 中的 单词数目 。如果不存在这样的转换序列,返回 0

示例 1:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
输出:5
解释:一个最短转换序列是 "hit" -> "hot" -> "dot" -> "dog" -> "cog", 返回它的长度 5。

示例 2:

输入:beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
输出:0
解释:endWord "cog" 不在字典中,所以无法进行转换。

提示:

1 <= beginWord.length <= 10
endWord.length == beginWord.length
1 <= wordList.length <= 5000
wordList[i].length == beginWord.length
beginWord、endWord 和 wordList[i] 由小写英文字母组成
beginWord != endWord
wordList 中的所有字符串 互不相同

解题

方法一:广度优先搜索 + 优化建图

思路

本题要求的是最短转换序列的长度,看到最短首先想到的就是广度优先搜索。想到广度优先搜索自然而然的就能想到图,但是本题并没有直截了当的给出图的模型,因此我们需要把它抽象成图的模型。

我们可以把每个单词都抽象为一个点,如果两个单词可以只改变一个字母进行转换,那么说明他们之间有一条双向边。因此我们只需要把满足转换条件的点相连,就形成了一张图。

基于该图,我们以 beginWord 为图的起点,以 endWord 为终点进行广度优先搜索,寻找 beginWord 到 endWord 的最短路径。

算法

基于上面的思路我们考虑如何编程实现。

首先为了方便表示,我们先给每一个单词标号,即给每个单词分配一个 id。创建一个由单词 word 到 id 对应的映射 wordId,并将 beginWord 与 wordList 中所有的单词都加入这个映射中。之后我们检查 endWord 是否在该映射内,若不存在,则输入无解。我们可以使用哈希表实现上面的映射关系。

然后我们需要建图,依据朴素的思路,我们可以枚举每一对单词的组合,判断它们是否恰好相差一个字符,以判断这两个单词对应的节点是否能够相连。但是这样效率太低,我们可以优化建图。

具体地,我们可以创建虚拟节点。对于单词 hit,我们创建三个虚拟节点 it、ht、hi*,并让 hit 向这三个虚拟节点分别连一条边即可。如果一个单词能够转化为 hit,那么该单词必然会连接到这三个虚拟节点之一。对于每一个单词,我们枚举它连接到的虚拟节点,把该单词对应的 id 与这些虚拟节点对应的 id 相连即可。

最后我们将起点加入队列开始广度优先搜索,当搜索到终点时,我们就找到了最短路径的长度。注意因为添加了虚拟节点,所以我们得到的距离为实际最短路径长度的两倍。同时我们并未计算起点对答案的贡献,所以我们应当返回距离的一半再加一的结果。

代码

class Solution {
    Map wordId = new HashMap();
    List> edge = new ArrayList>();
    int nodeNum = 0;

    public int ladderLength(String beginWord, String endWord, List wordList) {
        for (String word : wordList) {
            addEdge(word);
        }
        addEdge(beginWord);
        if (!wordId.containsKey(endWord)) {
            return 0;
        }
        int[] dis = new int[nodeNum];
        Arrays.fill(dis, Integer.MAX_VALUE);
        int beginId = wordId.get(beginWord), endId = wordId.get(endWord);
        dis[beginId] = 0;

        Queue que = new LinkedList();
        que.offer(beginId);
        while (!que.isEmpty()) {
            int x = que.poll();
            if (x == endId) {
                return dis[endId] / 2 + 1;
            }
            for (int it : edge.get(x)) {
                if (dis[it] == Integer.MAX_VALUE) {
                    dis[it] = dis[x] + 1;
                    que.offer(it);
                }
            }
        }
        return 0;
    }

    public void addEdge(String word) {
        addWord(word);
        int id1 = wordId.get(word);
        char[] array = word.toCharArray();
        int length = array.length;
        for (int i = 0; i < length; ++i) {
            char tmp = array[i];
            array[i] = '*';
            String newWord = new String(array);
            addWord(newWord);
            int id2 = wordId.get(newWord);
            edge.get(id1).add(id2);
            edge.get(id2).add(id1);
            array[i] = tmp;
        }
    }

    public void addWord(String word) {
        if (!wordId.containsKey(word)) {
            wordId.put(word, nodeNum++);
            edge.add(new ArrayList());
        }
    }
}

复杂度分析

  • 时间复杂度:O(N×C2)。其中 N 为 wordList 的长度, C 为列表中单词的长度。

建图过程中,对于每一个单词,我们需要枚举它连接到的所有虚拟节点,时间复杂度为 O(C),将这些单词加入到哈希表中,时间复杂度为 O(N×C),因此总时间复杂度为 O(N×C)

广度优先搜索的时间复杂度最坏情况下是 O(N \times C)O(N×C)。每一个单词需要拓展出 O(C)O(C) 个虚拟节点,因此节点数 O(N \times C)O(N×C)。

  • 空间复杂度:O(N×C2)。其中 N 为 wordList 的长度,C 为列表中单词的长度。哈希表中包含 O(N×C) 个节点,每个节点占用空间 O(C),因此总的空间复杂度为 O(N×C^2)

关注我

湘ICP备2020021380号-1
© 2014 - 2024 SIWEN.PENG